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Real-Space Methods for Interpreting Electron Mierographs in Cross-Grating Orientations. L 
Exact Wave-Mechanical Formulation 
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Alternative procedures are presented to the usual dynamical matrix method of calculating the dispersion 
surface, which suffers from very slow convergence in orientations where the diffraction pattern exhibits 
a full plane of the reciprocal lattice. A preliminary discussion is given of the cylindrical 'muffin-tin' 
approximation to the real-space projected crystal potential, the basis of the adaptation for use in high- 
energy electron-diffraction theory of both the APW and KKR methods. Full formulae for the diffracted 
amplitudes are arrived at, and an evaluation is made of the respective merits of the KKR and APW 
methods. 

1. Introduction 

Up to the present the computational ease of dealing 
with diffraction contrast images of crystals, oriented so 
as to give rise to a single row of diffraction spots, has 
ensured the popularity of 'systematic diffraction' work, 
as opposed to that using 'cross-grating' orientations, 
where a whole plane of diffraction spots is excited 
(see e.g. Berry, Buxton & Ozorio de Almeida, 1973, 
hereafter referred to as BBOA). It can be shown, 
within the conditions of validity of the high-energy 
approximation, that in the latter case the image is 
determined by a two-dimensional projection of the 
crystal potential, whereas in the former the effective 
potential has only one dimension (see e.g. Berry, 1971). 
This implies that the cross-grating image is by far the 
richer source of information on the full crystal poten- 
tial, even if it is comparatively more difficult to extract. 
It also happens that for several materials it is much 
easier to prepare specimens to display cross-grating 
poles, e.g. epitaxically grown films and easily separable 
layered structures. For these reasons it is to be ex- 
pected that interest in pole figures and methods for 
their interpretation is bound to grow, and first signs of 
this can already be found in the literature (Steeds, 
Jones, Ozorio de Almeida & Tatlock, 1973; Fujimoto 
et al., 1973). 

The standard many-beam 'dynamical' theory is in 
principle the simplest way to tackle the problem of 
electron motion in a two-dimensional lattice, or net 
of atomic strings, but, as in this instance the number of 
beams necessary for convergence is very great (typi- 
cally of the order of 100), one must abdicate the physical 
insight provided by the analysis of approximations in- 
volving only a few beams even if adequate computa- 
tional facilities are to be found. The advantage of 
working in real space is that one is able to make 
explicit use of the near cylindrical symmetry of the 
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atomic strings so as to greatly reduce the labour of 
determining the dispersion surface. The full calculation 
of the diffraction amplitudes is still a formidable 
problem as we shall see, but use of the approximations 
discussed in part II (Ozorio de Almeida, 1975) when 
valid will greatly simplify this task. There, it will also 
be shown how some qualitative features of pole pat- 
terns can be sorted out using the present approach 
prior to any computation. 

Part I contains a full wave-mechanical formulation 
of the K K R  and APW methods of constructing the 
dispersion surface. The only approximation involved 
is the use of 'muffin-tin' potentials described in §3. 
Though the view of the author is that the strength of 
these methods will ultimately depend on the reliability 
of the approximations presented in part II and on 
their serving as a basis for the study of special effects 
of pole figures yet to be explored, there is no reason 
why they cannot be used as they stand. It should be 
mentioned that there are still other ways of calculating 
the diffracted amplitudes which altogether bypass the 
need to construct the dispersion surface. One is the 
'multi-slice method' [recently reviewed by Goodman & 
Moodie (1974)], which as the name implies, divides the 
crystal into layers thin enough to be considered 
separately as pure phase objects. This will certainly be 
the best method for very thin crystals. A full exposition 
of its application in cross-grating situations is to be 
found in Turner (1967). The method of interfering 
classical paths, considered in the first four sections of 
BBOA cannot be used reliably in the energy range of 
the common transmission electron microscope 
(,.-, 100 kV). 

2. Bloch waves in two dimensions 

Identifying the z axis with the crystal direction nearly 
parallel to the incident beam of electrons, and placing 
the origin on the entrance surface as shown in Fig. 1, 
with the positive z direction into the crystal, we define 
R as a two-dimensional position vector A_Oz, so that 
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r = (x, y, z) = (R, z). The wave equation in the high- 
energy approximation is then 

{VZ+k2- O(R)}~(r)=0,  (2.1) 

where the wave number ko and the reduced projected 
potential U(R) are given by the relativistic expressions 

1 (2moE+ E2/C2) 1/2 (2.2) k0 = ~- 

and 

dz V(Rlz), 0(R)= ~ (mo + E/c 2) ~ o (2.3) 

E being the kinetic energy and m0 the rest mass of the 
electron, whereas V(r) is the real lattice potential with 
periodicity A in the z direction. Separation of variables 
in (2.1) leads to 

~,(R,z)= ~ cjzj(R) exp { i (k~-Sj ) l /2z} ,  (2.4) 
J 

where z~(R) satisfies 

+ s j -  (2.5) 

Sj being the 'two-dimensional energy'. The absence of 
back scattering implies that the boundary condition 
on the incoming surface is simply 

cjr j(R)=exp {i(K0. R)}, (2.6) 
J 

Ko being the component of the wave vector _l_z. 
From the two-dimensional periodicity of O(R) it fol- 

lows that the solutions rj(R) will be Bloch waves, 
satisfying 

zj(R + R,) =exp {i(K o . R,)}zj(R), (2.7) 

if Rg is a net vector, with the Bloch vector K0 identical 
with the component of the incident wave vector defined 
previously. The quantized eigenvalues Sj depend on K0, 
and if Sj(K0) is plotted vertically above the horizontal 
plane defined by (K0:,, K0y) the result is the dispersion 
surface (for the relation between this definition of the 
dispersion surface and the one more commonly used 
see Appendix A). 

The Fourier coefficients of the Bloch wave are given 
by 

f i b -  ~- d2R rj(ll) exp ( - i K  c . R) ,  (2.8) 
mesh 

the integration being carried over a unit Wigner-Seitz 
cell, or mesh as it is called in two dimensions, of area e, 
and where use is made of the definition 

KG = K0 + G,  (2.9) 

G being a vector of the reciprocal net. Since, from equa- 
tion (2.6) 

C;  =~flg (2.10) 

the expression for the Gth diffraction amplitude 
AG(K0,z), defined by 

~,(r)- ~ exp {i(k0+ G ) . r}Aa(K0,z), 
G 

is seen to be 

A~(Ko, z) = ~ ~ eot~*n~t-G exp ( - iS j z /2ko )  . (2.12) 
J 

In the present notation the dynamical matrix equa- 
tion becomes 

flJ, {[Sj(Ko) -(Ko -Ji- G)2]~GG , -- OG_ G, ) = 0 .  (2.13/ 
G' 

(2.11) 

It is the difficulty of representing the crystal potential 
O(R) in a Fourier sum with few Fourier coefficients/]G, 
which makes it hard to use the dynamical theory. This 
is a pity since (2.13) provides directly the coefficients 
fl~(K0) necessary for a full calculation of the diffraction 
amplitudes. 

3. Nature of the projected potential 

Before proceeding to the derivation of alternative 
eigenvalue equations to (2.13) it is worth while con- 
sidering more closely the two-dimensional projected 
potential, especially as this is not done in BBOA. To 
the extent that the crystal can be pictured as a super- 
position of spherical atomic potentials, it is evident 

KO 

z~ zi-z 
Fig. 1. Coordinate system. 

Fig. 2. Contours of constant O(R) for a square net. 
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Fig. 3. Averaged potentials U(R) for an accelerating voltage of 
750 kV. 

Fig. 4. Interstitial potential is obtained by first approximating 
the corner of the Wigner-Seitz mesh by linear potential in 
the triangle. 
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Fig. 5. Potential for Cu[111] along the directions which lead 
to the mesh corner and to the face centre is compared to 
the 'muffin-tin' potential near the 'muffin-tin' zero. The 
scale should be compared with that in Fig. 3. 

that a single string of atoms would have a cylindrical 
averaged potential. The departure from pure radial 
dependence of the potential inside each Wigner-Seitz 
mesh will thus depend only on the small overlap of the 
different strings near the mesh boundaries and will be 
further reduced by any rotational symmetry of the 
lattice. Near the corners of the mesh the superposition 
of the string potentials will result in a flattening of the 
total (Fig. 2). 

It is then reasonable to substitute the projected crystal 
potential by a cylindrical 'muffin-tin' model potential" 
Inside the maximum circle that can be drawn about the 
centre of each string without overlapping neighbouring 
circles, the potential is made cylindrically symmetric, 
whereas outside these circles referred to as 'muffin-tins', 
the interstitial potential is flat. The potential is then 
measured with respect to the interstitial potential; the 
'muffin-tin' zero. The great advantage of this model is 
that it enables angular momentum to be conserved in 
each Wigner-Seitz mesh. 

Given the atomic scattering factors f(s), found 
tabulated by say Doyle & Turner (1968), the projected 
real-space potential can be reconstructed from the 
Fourier series 

O(R)=(-4n/z) (m/mo) 
x ~ exp (-aZGZ/6)f(G/4n) exp (iG. R),  (3.1) 

G 
where z is the volume of the primitive unit cell of the 
lattice, and a2/6 is the temperature-dependent Debye- 
Waller parameter. In the absence of lattice vibrations 
the projected potential would have a logarithmic 
singularity at the centre of the atomic strings, but this 
is smoothed over by the Debye-Waller factor (Fig. 3). 

It can be verified that the angular average of U(R) 
required inside the muffin-tin is given by 

O(R)=const.-(47~/z) (m/mo) ~ exp (-aZG2/6) 
G 

x f(G/4n)Jo(GR) , (3.2) 

Jo(x) being a zero-order Bessel function. The arbitrary 
constant is determined from the fact that the average 
interstitial potential must be taken as the 'muffin-tin 
zero'. The most convenient way to estimate its value 
is to approximate the region by triangles, as shown in 
Fig. 4, and take the average of their corners. A com- 
parison of the 'muffin-tin' potential for Cu[111] with 
that along the mesh diagonal and the bisector of the 
side of the mesh is shown in Fig. 5. 

4. The KKR and APW eigenvalue equations 

Experience with three-dimensional band-structure cal- 
culations shows that there are two outstanding methods 
making use of the near spherical 'muffin-tin' symmetry 
of the potential inside each Wigner-Seitz cell (see 
Ziman, 1971): the Augmented Plane Wave method, 
(Slater, 1973) know as the APW method, and the 
Greenian method known as the KKR method (Kor- 
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ringa, 1947; Kohn & Rostoker, 1954). The Greenian 
method is fully analytical, making it possible to obtain 
special insight into limiting regions of the dispersion 
surface. In three dimensions it is also the most con- 
vergent procedure. Unfortunately, however, it is not 
a viable way of obtaining exact diffraction amplitudes, 
since the wave functions are given in real-space angular- 
momentum representation throughout the Wigner- 
Seitz mesh. The APW method provides only an asymp- 
totic approximation to the eigenvalues and Bloch 
functions. In spite of this the numerical convergence in 
three dimensions is almost as good as with KKR (see 
Lawrence, 1969). Moreover, in this method the wave 
functions are expanded in plane waves in the inter- 
stitial region of the unit mesh, which will be shown to 
facilitate the calculation of the Fourier integrals (2.8). 

The presentation chosen to unify the derivation of 
the KKR and APW eigenvalue equations is closely 
modeled on that of Beleznay & Lawrence (1968), 
dealing with band structure in three dimensions. The 
reader may find that the original derivations of Slater, 
who followed a variational approach, and Korringa, 
based on multiple-scattering theory, are in many ways 
more instructive. 

To solve equation (2.5) the lattice propagator or 
Greenian introduced, satisfying 

(V~ + S) ~(R, R') = ~(R - R').  (4.1) 

Both wave function and propagator are subject to 
the Bloch condition on the boundary of a Wigner- 
Seitz cell: 

f(R~)=exp (iK0. R~)f(R~) ] 

0 b I (4.2) gn-/(R0) = - exp  (iK0. R1)f(R~) 

where n is the unit outward pointing normal to the 
Wigner-Seitz cell boundary as shown in Fig. 6, and 
R~ and R[ are conjugate boundary points of the cell. 
Multiplying (2.5) by ~*(R,R') and the complex con- 
jugate of (4.1) by z(R), subtracting the equations, and 
integrating over R in the interior of the polygonal mesh 
leads to 

(4.3) 

~(R' ,  R) = ~ * ( R , R ' ) ,  (4.4) 

is equivalent to 

T(R)= 0Iw-s meshdZR'G(R'R')O(R')r(R')" (4.5) 

The lattice propagator can be expressed in terms of a 
real lattice sum 

Fig. 6. Conjugate boundary points of the Wigner-Seitz mesh 
for a hexagonal net. 

~(R,R') = ( - / / 4 )  ~ H~ol)(Sml R -  R ' -  R,I) 
Rl  

xexp (iK0. R,), (4.6) 

where HCo~)(x) is a Hankel function, or expanded in 
terms of plane waves, 

f~(R,R') = 1/a ~ exp {iK G . ( R -  R')}/(S-K~;), (4.7) 
IN G 

as can be directly verified by substitution into (4.1). 
The Hermitian property (4.4) is an obvious consequence 
of (4.7). 

Transforming the volume integral over the 'muffin- 
tin' in (4.5) into a surface integral we obtain 

ds '{ f~(R, R') c~r(R') r(R,) c3 N } 
a' - RM c~R ~ -- c~R' (R, R') 

+ S dZR ' f~(R, R') O(R')r(R') 
R ' > R  M 

= ~'z(R) (R > RM) (4.8a) 
[0 (R<R~) .  (4.8b) 

Thus, if U(R') = 0 for R > RM, where RM is the 'muf- 
fin-tin' radius, the second term in the LHS of (4.8) is 
zero. 

Substitution of the angular momentum expansion 
for the wave function, 

oo 
"c(R)=zfR, O)= ~ az(R) exp (ilO) (4.9) 

and for the propagator, 

oo 
Cg(R,R')=¼ ~ {[-iJt(Sa/2R)H~I)(s1/eR)~w 

I J ' =  - o o  

+ fY;r(S, Ko)J,(SInR)J,,(S'/ZR)] 

xexp (ilOR) exp (il'Oa,)}, (4-10) 

which defines the structure constant fCI~,(S, K0), into 
equation (4.8b), and integration over angles leads to 
the set of homogeneous linear equations 

Iw-s dZRfY*(R'R')OOi)z(R)- z(R) 
m e s h  

J b o u n d a r y  N --T - - ~  d s = O ,  

which, because of the Hermitian property 
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r~oo~ {[c3~ H}t)(S'/2R') L,,(S)H}t,)(S'/2R ') ]fit,, 

+ cg~t'(S, K 0 ) [ ~  Jt'(S1/ZR')-Lv(S)Jr(S~/ZR')]} 

xat(S, Ko)=0 (4.11) 

where 

d (4.12) L,(S)=[1/zt(R,S)] ~ I¢=RM 

and H}t)(x) is a Hankel function. Finally, defining the 
two-dimensional analogue of the scattering phase-shift 
t i t ,  

{ ~ Yt(SI/ZRM)--L,(S)Yt(S1/2RM)} cot rh(S)= ~-/~ 

- {~R- J'(SX/ZRM)-Lt(S) J'(S1/2RM)} 

(4.13) 

the eigenvalue condition becomes simply 

det II (cot ~,(s)-i)f,,+ ~h,(S, K0)II=0. (4.14) 
The KKR method neatly separates all the structural 

aspects, into ~v(S,  K0), from the scattering properties 
of the individual 'muffin-tin' potential. In fact, the 
diagonal term is proportional to the inverse of the lth 
component of the scattering amplitude (see Berry & 
Ozorio de Almeida, 1973). The variational derivation 
of Kohn & Rostocker showed that any finite set of 
values az, obtained by truncating the infinite matrix 
equation (4.11) would give the best approximate fit to 
condition (4.8b) in some technical sense. A full discus- 
sion of the structure constants is left to Appendix B. 

In the APW method the solution outside the 'muffin- 
tin' is expanded in a set of plane waves: 

z(R)= ~ Be(S, K0 ) exp (iK G . R) 
e 

= ~ B e ~ itJz(Ke R) exp {il(OR--OKG)}, 
G l 

(4.15) 

each plane wave being made continuous to a solution 
in the interior by the choice of the coefficients C~ in 
the expansion 

o o  

r~(R)= ~ C~rt(R) exp (ilOR), (4.16) 
l---- - - e o  

so that 

C~=iUt(KeRM) exp (--ilOK~)/zz(RM) . (4.17) 

By similatly expanding the Greenian" 

1 
f~(R,R') = -~ ~ {exp (iK e . R)/(S-K~)} 

o o  

x ~ i-lJl(KeR ') exp {--il(Olv--OKG)}, 
l.-~ - - o o  

(4.18) 

equation (4.8) takes the form 

2z~RM ~ [B G, exp (iK c . R) exp {il(OKe--OKG,)} 
0~ G,G, ' I  

-- ( S -  Ke,)] x Jz(KeR)Jt(KG,R ) {Lz(S) - 

1 ~ j,(KeRM) ) ~ ( R )  (g>  RM) 
x j,(geRM) 0R = [ 0  (R < RM) • 

(4.19) 

Defining Nee, so that 

exp ( iG' .  R)NeG, = {exp ( iG.  R) (R > RM) 
e" (R < RM) ( 4 . 2 0 )  

from which it follows that 

1 I exp{i(G-G').R}.dZR, (4.21) N ~ , =  ~ R>R~ 

it is possible to combine the two regimes of equation 
(4.19) into the homogenous set of linear equations for 
the coefficients Be: 

{(K~-S)Nce,+ I-'~G,}Be,=O , (4.22) 
e '  

with 

F~e, - 2teRM ~ jz(KeRM)JI(Ke,RM ) 

x exp {il(OKe--OK~,)} 

{ 1 O jt(KeRM) } (4.23) x Lz(S) Jl OR 
and 

Nee ,  = Ne,  e = f GG, 
2ZCRM J~(IG- G'IRM) 

IG-G ' I  ........... (4.24) 

It is possible to simplify formulae (4.22) and (4.23) 
in a way that shows each matrix element to be real: 
Making use of the derivative with respect to Ke of both 
sides of the identity 

o o  

J0(IKe-KwIRM)- ~ Jr(geRM) 
[ ~  - - c o  

x Jt(Ke,RM) exp {il(OKe--OKw)}, (4.25) 

the APW eigenvalue formula becomes 

det II(S- K~)ficQ,- FGc,II--0, (4.26) 

where the energy-dependent 'pseudopotential' 

J~(IG- G'[RM) FoG,- 2teRM _(KG" KG ' _ S) ........... ]-(~: G'i .......... 

(4.27) 
o o  

+ ~, e,S,(KeR~,)Y,(KG,R~)r~,(S) 
l = 0  

x cos l(OKe-- 0Ke')}, 
and 

1 (l=0) (4.28) 
e~= 2 (l~0)" 
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It is important to note that any departure from zero 
of the interstitial potential is easily taken into account 
by the APW method by simply adding a term 

1 ¢ 
OcG,= 

to FGG'. 

d2RlSr(R) exp { i ( G - G ' ) .  R} 

(4.29) 

5. Wave functions and Fourier coefficients 

Once the eigenvalue S~(K0) has been found, the eigen- 
vector a~ or B~ and hence the wave function ~,(r) at the 
exit face of the crystal is determinable to within a 
constant factor. In general to do so is considerably 
more time-consuming than the evaluation of the 
determinant. The further problems of normalization 
and Fourier inversion are particular to the real-space 
methods described in the previous section. This is 
because the normalization condition implied by equa- 
tion (2.10), 

I [Tj(R~K0)I2dER= 1, (5.1) 
. m e s h  

which in the dynamical theory reduces to the require- 
ment that 

I/~(Ko)12 = 1 /~ ,  (5.2) 
G 

becomes in the KKR theory 

o o  

E 
l , l ' =  - - o o  

aJ"J* S d2Rz'I(R)z~.(R) exp {i(l--l')OR} 1 
m e s h  

(5.3) 
and in the APW theory 

BS BS I d2R~J(R)~S*(R)= 1 G G" 
G , G '  m e s h  

where, of course 

(5.4) 

,[exp (iK c . R) (R > RM) 
~uJ(R)= [C~r,(R) exp(ilOR) (R <RM) " 

(5.5) 

There is no exact way of avoiding the two-dimen- 
sional integral over an area with non-separable bound- 
aries required for the normalization of the KKR wave 
equation. The advantage of the APW method, in fact 
a hybrid between real and reciprocal space, is that the 
integral in (5.4) can be further simplified: 

I o o  

d2R~J(R)~/J*(R)=~Ntm, +2n E et 
m e s h  1 = 0  

x cos I(OIcG--OKC,,) Jt(K6RM) 
1 

X Yl(K G . RM) ihlZ 

x I:M RdRIr,(R)I2 (5.6) 

and finally eliminated by making use of the relation 
(see e.g. Messiah, 1961) 

l~ M 8L~ (5.7) 1 RdRIrt(R)I 2= --RM 8S 
Irz(RM)I 2 

Any computational procedure for finding the eigen- 
values will involve the logarithmic derivative L,(S) at 
nearby points, which can easily be stored for the evalua- 
tion of (5.6) and (5.7). One can of course approximate 
the KKR Bloch functions by 'circularizing' the Wigner- 
Seitz mesh, i.e. by substituting in its place a circle with 
the same area. The integral in (5.3) then separates into 
a much simpler form than (5.6). Indeed for bound 
bands where S~<0, the partial waves rz(R) are ex- 
ponentially small in the region of the cell which is 
fudged over, so that this approximation may be expected 
to hold very well. 

After normalization one is in a position to evaluate 
the Fourier coefficients fl~;. The same problems again 
arise. The approximate circularized KKR Fourier coef- 
ficients are given by 

2n ~o iRw_s 
tic ~- - -  E a~ RdRv~(R)J,(KGR ) , (5.8) 

l =  - o o  0 

where Rw-s is the radius of the Wigner-Seitz circle. 
Fourier inversion of the APW wave function leads to 

p6= ~ B6 N..,  + ~, cos t(0~.,-O~.) 
G '  / = 0  

x -J--t(Kc'RM) r,(RM) I; M RdRT'(R)J'(Kt~R)} " (5.9) 

6. Conclusion 

The formulae of §4 are at present being tested against 
many-beam calculations of the dispersion surface. To 
proceed to a full simulation of pole figures one needs 
to take absorption into account. The way to do this is 
indicated in §6 of BBOA, the procedure being gen- 
eralized to two dimensions in part II of this paper. 

There is very little doubt that the 'muffin-tin' ap- 
proximation, essential to the methods described, is 
excellent for the construction of the dispersion surface, 
and is also fairly reliable when dealing with average 
features of the wave-functions. Its value has yet to be 
tested, however, against anything like the fine features 
of cross-grating pole figures, 

APPENDIX A 
Relation between the usual definition of dispersion 

surface and the one adopted 

Conventional dynamical theory considers the three- 
dimensional motion of the electrons under the in- 
fluence of a lattice of aomtic strings or planes. This 
must have the form of a superposition of Bloch waves 

~(r)= ~ Q ~ fl~ exp {i(kj+ G). r}. (A.1) 
J G 
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One then solves for ~t(r) by inserting (A.1) directly 
into equation (2.1). The usual dispersion surface 
displays the kj contours for constant k~, but comparison 
of (A.1) with (2.12) and (2.11) shows that 

k ~ = k o -  (Sj/2 k0)2. (A.2) 

Thus, for a given K0, (kl)z and Sj are linearly related, 
it being necessary to turn upside down the solutions of 
equation (2.13) as well as to adjust the scale and the 
origin. Among other advantages it is much more 
convenient to draw Sj then to consider the small devia- 
tion kj from k0. Finally it should be noted that in the 
Berry (1971) notation factors of 2n are included in the 
wave numbers and reciprocal-lattice vectors, which 
increases S: and /_?(R) by a factor of 4n 2. 

APPENDIX B 
The KKR structure constants 

The incomplete Greenian ff'(R, R') is defined by 

where 
ff'(R, R') = f f (R,R' ) -  ~°(R, R'), (B.1) 

i 
ff°(R,R') = -  ~ H(o*)(SX/2l R -  R'I) (B.2) 

is the free propagator in two dimensions. Both if(R, R') 
and ff°(R, R') satisfy equation (4.1), and so it follows 
that 

(V 2+  S) f f ' (R,R' )=0 (B.3) 

in the unit mesh, which justifies the form taken by 
(4.10). The KKR structure constant is thus the 
angular-momentum representation of the incomplete 
Greenian. 

To determine fflz' (K0,S) one expands the incom- 
plete Greenian in terms of the single variable ~ = R -  R': 

Do 

~' (~)= ~ ff;(Ko, S)Jz(Smo) exp (il@), (B.4) 
l-- - o o  

where there appears the reduced structure constant 

structure constant. It should be noted that the relation- 
ship between f¢~ and ff;r is much simpler in two than 
in three dimensions. 

It is possible to obtain a reciprocal-lattice expansion 
of ff~(Ko, S) which is useful in theoretical considera- 
tions. Expansion in angular momentum of the plane 
wave in equation (4.7) and comparison with (B.4) gives 

~(K0, S) = 4il exp ( -  ilOxG) Jt(K¢,o) 
7- ~ S-  K~ J,(S"~) 

H~ol)(S1/2e) 
+ifit.o Jo(S~/20 ) (B.8) 

For negative S the sum (B.5) for the reduced struc- 
ture constant is rapidly convergent, but neither (B.5) 
nor (B.8) are efficient ways of evaluating ~(K0, S) for 
positive energies. It is thus necessary to make use of a 
full Ewald scheme, first applied to the KKR equation 
by Ham & Segall (1961). This consists in splitting the 
summation into real-space and reciprocal-space series, 
both of which converge exponentially. Thus, writing 

2 3 (¢~= B~ + B t + B , , (B.9) 
we arrive at 

B~= 4i' S_,11/z ~ exp { ( S - K 2 ) X }  r,',,, 
-7 -  a S -  K~ .... ""a 

x exp( -  ilOlca) 
21tl 

B ~ = - -  S ~":2 ~, R~ 's 
i ¢ 0  

x exp {i(Ko. Ri--/0R,)} 

S x dtt Itl-1 exp { -  R~t + S/4t} (B.10) 
I I 4 X  

isx du 1 B3 ° = 1 glo - -  e" --  Et(Sx) 
7"(, - o o  U 7r, 

where X can be chosen arbitrarily and Ei(x) is the 
exponential integral function. 

ff~(Ko, S) = - i  ~ Hp)(S1/2R,) 
i ¢ 0  

x exp {i(K0 • R,)-I0a,)} • (B.5) 

But, from methods similar to those found in Ap- 
pendix 2 of Kohn & Rostoker (1954) we have that 

oo 

JI(SI/2IR-R'[) exp {il(OR--OR,)}= ~ (~l.n-n' 
H , n  t ~ - -  o o  

x J,,(S'/2R)j,,(S'/2R ') exp {i(nOR-n'Ow) } , (B.6) 

thus arriving at the important result that the full struc- 
ture constant 

ff~r(Ko, S) = if;_ r(Ko, S) (B.7) 

and it is therefore only necessary to discuss the reduced 
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Real-Space Methods for Interpreting Electron Micrographs in Cross-Grating Orientations. 
II. Analysis and Semiclassical Approximations 
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The two-dimensional version of the KKR eigenvalue equation is analysed in different limiting situations. 
and reduction due to symmetry is discussed. With the aid of the semiclassical approximation to the 
Bloch functions, it is shown that simple expressions are obtained for the complex eigenvalues responsible 
for absorption. A qualitative understanding of some of the basic features of pole patterns results from a 
consideration of the approximations to both wave functions and dispersion surface. 

1. Introduction 

The main objective of the following discussion is to 
bring out the physical content of the formulae for the 
dispersion surface and the diffracted amplitudes con- 
tained in part I (Ozorio de Almeida, 1975). To begin 
with we analyse limiting regions of the two-dimensional 
dispersion surface, obtaining results which should 
remain approximately valid over wider domains, 
though this has yet to be computationally verified. 
Subsequently the results of {}4 of Berry (1971) are 
generalized, leading to the semiclassical approxima- 
tion of the Bloch functions. This in its turn permits one 
to deduce simple formulae for the imaginary com- 
ponents of the eigenvalues, which hold for all orienta- 
tions. Finally, in {} 6, we begin to see how the preceding 
considerations can be directly applied to the under- 
standing of pole patterns [see e.g. Berry, Buxton & 
Ozorio de Almeida (1973), again referred to as BBOA]. 

Symbols occurring in part I are not redefined here. 

2. Approximations to the KKR eigenvalue equation 

(i) Born approximation 
In the weak scattering limit the assumption is made 

that the wave function in equation (4.5) of part I can 
be approximated by a plane wave: 

* Previously in the H. H. Wills Laboratory of Physics, 
Bristol, England. 

1 exp (iKG. R) 
e x p ( i K 0 . R ) =  ~- ~ -  S - -K~  

x I dZR'O(R ') exp ( - i G .  R ' ) .  
mesh 

(2-1) 

The Born apprDximation demands that all but the 
G = 0  term be neglected, leading to the eigenvalue 
condition 

sB°rn-Kz=(O(R))  . (2.2) 

This result, which also follows simply from perturba- 
tion theory (see Ziman, 1964), is not valid even for 
weak potentials at a zone boundary. A proof of condi- 
tion (2.2) directly from the KKR eigenvalue equation 
is too involved to be included here, but it is worth 
pointing out that it involves summations to infinite 
order in angular momentum, thus indicating that use 
of the full KKR determinant to calculate the dispersion 
surface is not advisable when S>> (O(R)). 

The empty-lattice limit, ( 0 ) ~  0 in (2.2), is also 
satisfied by the APW equation, since a whole row 
(G = 0) of the determinant vanishes. 

(ii) Small-energy limit 
Analysis of the behaviour of phase shifts and struc- 

ture constants shows that for ISI--->0 the K K R  
determinant tends to a diagonal form. Except for 
anomalous cases referred to as partial wave resonances, 
when given phase shifts may tend to infinity, it is also 


